The

Complete
Reference

999

1000

C++: The Complete Reference

development and execution of highly-distributed, component-based applications.

It enables differing computer languages to work together, and provides for
security, program portability, and a common programming model for the Windows
platform. Although the .NET Framework is a relatively recent addition to computing,
it is an environment in which many C++ programmers will likely be working in the
near future.

Microsoft’s NET Framework provides a managed environment that oversees
program execution. A program targeted for the NET Framework is not compiled into
executable object code. Rather, it is compiled into Microsoft Intermediate Language
(MSIL), which is then executed under the control of the Common Language Runtime
(CLR). Managed execution is the mechanism that supports the key advantages offered
by the NET Framework.

To take advantage of NET managed execution, it is necessary for a C++ program
to use a set of nonstandard, extended keywords and preprocessor directives that have
been defined by Microsoft. It is important to understand that these extensions are not
defined by ANSI/ISO standard C++. Thus, code in which they are used is nonportable
to other environments.

Itis far beyond the scope of this book to describe the .NET Framework, or the C++
programming techniques necessary to utilize it. (A thorough explanation of the .NET
Framework and how to create C++ code for it would easily fill a large book!) However,
a brief synopsis of the .NET managed extensions to C++ is given here for the benefit of
those programmers working in the .NET environment. A basic understanding of the
NET Framework is assumed.

Microsoft’s NET Framework defines an environment that supports the

__| The‘ ‘.‘ N”ET Kéngrd ““Extensions |

To support the .NET managed execution er:vironment, Microsoft adds the following
keywords to the C++ language:

_ _abstract _ _box _ _delegate
__event _ _finally __gc

_ _identifier _ _interface __nogc
__pin _. _property . _sealed

_ _try_cast _ _typeof _ _value

Each of these is briefly described in the following sections.

_abstract

_ _abstract is used in conjunction with __gc to specify an abstract managed class.
No object of an _ _abstract class can be created. A class specified as _ _abstract is
not required to contain pure virtual functions.

Appendix A: The .NET Managed Extensions to C++ 1001

_box
_ _box wraps a value within an object. Boxing enables a value type to be used by code
that requires an object derived from System::Object, which is the base class of all .NET

objects.

_ _delegate

_ _delegate specifies a delegate, which encapsulates a pointer to a function within
a managed class (that is, a class modified by _ _gc).

_ _event
__event specifies a function that represents an event. Only the prototype for the function is specified.

_ _finally
_ _finally is an addition to the standard C++ exception handling mechanism. It is used
to specify a block of code that will execute when a try/catch block is left. It does not
matter what conditions cause the try / catch block to terminate. In all cases, the _ _finally block will

be executed.

_ B¢

__ge specifies a managed class. Here, “gc” stands for “garbage collection” and indicates
that objects of the class are automatically garbage collected when they are no longer
needed. An object is no longer needed when no references to the object exist. Objects

of a __ge class must be created using new. Arrays, pointers, and interfaces can also be

specified as _ _gc.

_ _identifier
__identifier allows a C++ keyword to be used as an identifier. This is a special-purpose
extension that will not be used by most programs.

_ _interface
_ _interface specifies a class that will act as an interface. In an interface, no function can
include a body. All functions in an interface are implicitly pure virtual functions. Thus,
an interface is essentially an abstract class in which no funcidon has an implementation.

_nogc
_ _nogc specifies a nonmanaged class. Since this is the type of class created by default,
the __nogc keyword is not usually used.

1002 C++: The Complete Reference

pin

_ _pin is used to specify a pointer that fixes the location in memory of the object to
which it points. Thus, an object that is “pinned” will not be moved in memory by the
garbage collector. As a result, garbage collection does not invalidate a pointer modified

by _ _pin.

_property
_ _property specifies a property, which is a member function that gets or sets the value
of a member variable. Properties provide a convenient means to control access to private
or protected data.

__sealed

_ _sealed prevents the class that it modifies from being inherited. It can also be used to
specify that a virtual function cannot be overridden.

_ _try_cast

_ _try_cast attempts to cast one type of expression into another. If the cast fails, an
exception of type System::InvalidCastException is thrown.

_typeof
__typeof obtains an object that encapsulates type information for a given type. This object is an
instance of System::Type.

__value

— _value specifies a class that is represented as a value type. A value type holds its own
values. This differs from a _ _gc type, which must allocate storage through the use of
new. Value types are not subject to garbage collection.

__ | Preprocessor Extensions

To support .NET, Microsoft defines the #using preprocessor directive, which is used to
import metadata into your program. Metadata contains type and member information
in a form that is independent of a specific computer language. Thus, metadata helps
support mixed-language programming. All managed C++ programs must import
<mscorlib.dll>, which contains the metadata for the .NET Framework.

Microsoft defines two pragmas that relate to the NET Framework. (Pragmas are
used with the #pragma preprocessing directive.) The first is, managed, which specifies
managed code. The second is unmanaged, which specifies unmanaged (that is, native)
code. These pragmas can be used within a program to selectively create managed and
unmanaged code.

Appendix A: The .NET Managed Extensions to C++ 1003

__| The attribute Attribute

Microsoft defines attribute, which is the attribute used to declare another attribute.

___| compiling Managed C++

At the time of this writing, the only compiler commonly available that can target the
NET Framework is the one supplied by Microsoft’s Visual Studio .NET. To compile a
managed code program, you must use the /clr option, which targets code for the
Common Language Runtime.

The

Complete
Reference

1005

1006

C++: The Complete Reference

have had a long term interest in robotics, especially robotic control languages. In

fact, years ago I designed and implemented industrial robotic control languages for

use on small educational robots. Although I no longer work professionally in the area
of robotics, it remains an important and engaging special interest of mine. Over the years
I'have seen the capabilities of robots (and the code that controls them) make major leaps
forward. We now stand at the beginning of the robotics age. There are already robots
that can mow the lawn and vacuum the floor. They assemble our cars and work in
environments dangerous to humans. Battlefield robots are now becoming a reality.
Many more robotic applications are on the way. As robots become more commonplace,
integrating themselves into the fabric of everyday life, increasing numbers of programmers
will find themselves writing robotic control code. And, much of that code will be in C++.

C++ is a natural choice for robotic programming because robots require efficient,
high-performance code. This is especially true for the low-level motor control routines,
and for such things as vision processing, where speed is quite important. Although some
parts of a robotic subsystem, such as a natural language processor, may be written in a
language such as C#, the low-level code will almost certainly remain in C++. C++ and
robotics go hand-in-hand.

If you are interested in robotics, especially if you are interested in creating your own
robot for experimentation, then you might find the robot in Figure B-1 of interest. This
is my current test robot. Several things make this robot interesting. First, it contains an

Figure B-1. A simple, yet effective experimental robot (Photo by Ken Kaiser)

Appendix B: C++ and the Robotics Age

on-board microprocessor that provides basic motor control and sensor feedback.
Second, it contains an RS-232 transceiver that is used to receive instructions from

the main computer and return results. This approach enables a remote computer to
provide the intensive processing that is necessary in robotics without adding all that
weight to the robot, itself. Third, it contains a video camera that is connected to a wireless
video transmitter. -

The robot is built on a Hobbico M1 Abrams R/C tank chassis. (I have found that the
chassis of R/C model tanks and cars often work well as a robot base.) I removed most
of the internals from the tank, including the receiver and speed controls, but I kept the
motors. The Hobbico tank is well suited for a robotics platform because it is quite strong,
the motors are good, it can carry a lot of weight, and its tank treads don't fall off. Also,
by using tank treads, the robot has a zero turning radius and can run on uneven ground.
The chassis is about 18 inches long and about 8 inches wide.

Once the chassis was empty, I added the following components. To provide
on-board control, T used a BASIC Stamp 2, which is a simple, yet powerful microprocessor
manufactured by Parallax. Inc. (www.parallaxinc.com). The RS-232 transceiver is also
from Parallax, as is the video camera and transmitter. Both the wireless RS-232 transceiver
and the video transmitter have a range of about 300 feet. I also added electronic speed
controllers for the tank motors. They are of the type used by high-performance R/C
cars. They are controlled by the BASIC Stamp microprocessor.

Here is the way the robot works. The remote computer runs the main robotic control
program. This program handles all “heavy-duty” processing, such as vision, guidance,
and spatial orientation. It can also learn a series of moves and then replay them. The
remote computer transmits motion-control instructions (via the wireless RS-232 link) to
the robot. The BASIC Stamp receives those instructions and puts them into action. For
example, if a “move forward” command is received, the BASIC Stamp sends the proper
signals to the electronic speed controllers connected to the motors. When the robot has
completed a command, it returns an acknowledgement code. Thus, communication
between the remote computer and the robot is bi-directional, and the successful completion
of each command can be confirmed.

Because the main processing for the robot occurs on the remote computer, there are
no severe limitations to the amount of processing that I can do. For example, at the time
of this writing, the robot can follow an object by using its vision system. This capability
requires a fair amount of processing that would be difficult to carry on board.

Recently, [have begun work on a robot arm that will be added to the robot. A
prototype of the arm is shown in Figure B-2. Although there are several commercial
robot arms available to the experimenter and hobbyist, [decided to create my own
because | wanted an arm that would be stronger and able to lift heavier objects than
was commonly available. The arm uses a stepper motor mounted at its base to turn a
long, threaded screw which opens and closes the gripper. This approach allows precise
movement along with considerable strength. The arm is controlled by its own Stamp. Thus,
the main robot controller simply hands off arm commands to the second Stamp. This
allows fully parallel operation of the robot and the arm, and prevents bogging down
the main robot controller.

1007

1008

C++: The Complete Reference

Figure B-2. A prototype robot arm (Photo by Ken Kaiser)

Although the main robotic control code will always remain in C++, l am experimenting
with migrating a couple of subsystems, including the RS-232 communication routines,
to C#. C# offers a convenient interface to IP data transfers and being able to control the
robot from a remote location via the Internet is a tantalizing thought.

